Involvement of Crosstalk between Oct4 and Meis1a in Neural Cell Fate Decision

نویسندگان

  • Takeyuki Yamada
  • Yumiko Urano-Tashiro
  • Saori Tanaka
  • Hirotada Akiyama
  • Fumio Tashiro
چکیده

Oct4 plays a critical role both in maintaining pluripotency and the cell fate decision of embryonic stem (ES) cells. Nonetheless, in the determination of the neuroectoderm (NE) from ES cells, the detailed regulation mechanism of the Oct4 gene expression is poorly understood. Here, we report that crosstalk between Oct4 and Meis1a, a Pbx-related homeobox protein, is required for neural differentiation of mouse P19 embryonic carcinoma (EC) cells induced by retinoic acid (RA). During neural differentiation, Oct4 expression was transiently enhanced during 6-12 h of RA addition and subsequently disappeared within 48 h. Coinciding with up-regulation of Oct4 expression, the induction of Meis1a expression was initiated and reached a plateau at 48 h, suggesting that transiently induced Oct4 activates Meis1a expression and the up-regulated Meis1a then suppresses Oct4 expression. Chromatin immunoprecipitation (ChIP) and luciferase reporter analysis showed that Oct4 enhanced Meis1a expression via direct binding to the Meis1 promoter accompanying histone H3 acetylation and appearance of 5-hydoxymethylcytosine (5hmC), while Meis1a suppressed Oct4 expression via direct association with the Oct4 promoter together with histone deacetylase 1 (HDAC1). Furthermore, ectopic Meis1a expression promoted neural differentiation via formation of large neurospheres that expressed Nestin, GLAST, BLBP and Sox1 as neural stem cell (NSC)/neural progenitor markers, whereas its down-regulation generated small neurospheres and repressed neural differentiation. Thus, these results imply that crosstalk between Oct4 and Meis1a on mutual gene expressions is essential for the determination of NE from EC cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pluripotency Factors in Embryonic Stem Cells Regulate Differentiation into Germ Layers

Cell fate decisions are fundamental for development, but we do not know how transcriptional networks reorganize during the transition from a pluripotent to a differentiated cell state. Here, we asked how mouse embryonic stem cells (ESCs) leave the pluripotent state and choose between germ layer fates. By analyzing the dynamics of the transcriptional circuit that maintains pluripotency, we found...

متن کامل

Simultaneous regulation of miR-451 and miR-191 led to erythroid fate decision of mouse embryonic stem cell

Objective(s): Various microRNAs (miRNAs) are expressed during development of mammalian cells, when they aid in modulating gene expression by mediating mRNA transcript cleavage and/or regulation of translation rate. miR-191 and miR-451 have been shown to be critical regulators of hematopoiesis and have important roles in the induction of erythroid fate decision. So, the aim of this study is inve...

متن کامل

A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation.

Multiple levels of control are in play to regulate pluripotency and differentiation in human embryonic stem cells (hESCs). At the transcriptional level, the core factors OCT4, NANOG and SOX2 form a positive autoregulatory loop that is pivotal for maintaining the undifferentiated state. At the post-transcriptional level, microRNAs (miRNAs) belonging to the miR-302 family are emerging as key play...

متن کامل

Defining the Role of Oxygen Tension in Human Neural Progenitor Fate

Hypoxia augments human embryonic stem cell (hESC) self-renewal via hypoxia-inducible factor 2α-activated OCT4 transcription. Hypoxia also increases the efficiency of reprogramming differentiated cells to a pluripotent-like state. Combined, these findings suggest that low O2 tension would impair the purposeful differentiation of pluripotent stem cells. Here, we show that low O2 tension and hypox...

متن کامل

OCT-4 Is a Good Predictive Biomarker for Local Recurrence in Head and Neck Basal Cell Carcinoma

Background and Aim: Basal cell carcinoma (BCC) is considered to be the most common malignancy in humans and occurs primarily in the skin especially in the head and neck region. Considering the high recurrence rate of the tumor, finding a marker for prediction of recurrence is very important. Cancer stem cells are a small subpopulation in the tumors that are related to tumorigenesis and recurren...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013